Eye Gaze Tracking Using an RGBD Camera: A Comparison with an RGB Solution

Xuehan Xiong (CMU), Qin Cai, Zicheng Liu, Zhengyou Zhang

Microsoft Research, Redmond, WA, USA
zhang@microsoft.com
http://research.microsoft.com/~zhang/

The 4th International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI 2014)
Outline

• Goal and motivation
• Challenges
• Approach
• Results
Goals and motivations

1. Kinect-based eye tracking

2. Comparison between RGBD and RGB alone
Goals and motivations

• Most commercial eye trackers are IR-based
 • Short range
 • Does not work outdoor

• Non-IR based system
 • Outdoor
 • Cheaper
 • Better capability of being integrated
 • Less accurate
Outline

• Motivation

• Challenges

• Approach

• Results
Challenges

• Eye images from IR-based approaches

• Eye images from Kinect
Outline

• Motivation

• Challenges

• Approach

• Results
Approach

• What is gaze (in our model)?

Notation:
- p -- pupil
- v -- visual axis
- t -- optical axis
- R_{vo} -- rotation compensation
- $v = R_{vo}t$

- a -- head center
- \bar{ae} -- offset
- R_{hp} -- head rotation
- r -- eyeball radius

Eyeball center:
- $e = a + R_{hp}\bar{ae}$
Approach

• What are fixed (in our model)?

Notation:
- \(p \) -- pupil
- \(v \) -- visual axis
- \(t \) -- optical axis
- \(R_{vo} \) -- rotation compensation
- b/w \(v \) and \(t \)
- \(v = R_{vo}t \)

- \(a \) -- head center
- \(\overrightarrow{ae} \) -- offset
- \(R_{hp} \) -- head rotation
- \(r \) -- eyeball radius

Eyeball center:
- \(e = a + R_{hp}\overrightarrow{ae} \)
Approach

• What to be measured (in our model)?

Notation:
- \(p \) -- pupil
- \(v \) -- visual axis
- \(t \) -- optical axis
- \(R_{vo} \) -- rotation compensation
- b/w \(v \) and \(t \)
- \(v = R_{vo}t \)

- \(a \) -- head center
- \(\overrightarrow{ae} \) -- offset
- \(R_{hp} \) -- head rotation
- \(r \) -- eyeball radius

Eyeball center:
- \(e = a + R_{hp}\overrightarrow{ae} \)
Approach

• System calibration
• Head pose
• Head center
• Pupil
• User calibration
System calibration

• World = color camera
 • Intrinsic parameters, centered at [0,0,0]

• Depth camera
 • Intrinsic and extrinsic parameters

• Monitor screen
 • Screen-camera calibration
Screen-camera calibration

• 4 images capturing screen + pattern
• 1 image from Kinect camera capturing the pattern
Calibration results
Head pose estimation

- Build a person-specific 3D face model

Average over 10 frames

Rigid points
Head pose estimation

• For each frame t
Head center

• The average of 13 landmarks
2D Iris detection
3D pupil estimation

\[\mathbf{u} = [u, v, f]^T \text{ from camera intrinsic parameters} \]

\[\mathbf{l} = \frac{\mathbf{u}}{\|\mathbf{u}\|} \]

Camera center

\[\mathbf{o} = [0, 0, 0] \]
User calibration

• What are fixed (in our model)?

Notation:

- p -- pupil
- v -- visual axis
- t -- optical axis
- R_{vo} -- rotation compensation
- b/w v and t
- $v = R_{vo}t$

- a -- head center
- ae -- offset
- R_{hp} -- head rotation
- r -- eyeball radius

Eyeball center:

$$e = a + R_{hp}ae$$

$$\min \sum_i (1 - (R_{vo}t_i)^T v_i)^2$$ over R_{vo}, ae, r
Outline

• Motivation

• Challenges

• Approach

• Results
Results

• Simulation
Error modeling

• Assuming perfect calibration (system and user)
• 3 sources of errors (assuming normal distribution with zero mean)
 • Head pose
 • Head center
 • Pupil
• Units
 • Head pose: degree
 • Head center: mm
 • Pupil: pixel
Simulation Result with low variances

- Variances – 0.1
Back to reality

Variance – 0.25

Variance – 0.5
Real Data: Free head movement

(a) 9 calibration points

(b) A subject with colored stickers
Experimental setup

• The monitor has a dimension of 520mm by 320mm.
• The distance between a test subject and the Kinect is between 600mm and 800mm.
• There are 9 subjects participated in the data collection.
• We collect three training sessions and two test sessions for each subject.
Best case scenario
Training error

Left eye

Right eye
Testing error

Left eye

Right eye
Testing error 2

Left eye

Right eye
Sample Results Without Stickers
Qin
Qin – training error

Left eye

Right eye
Qin – testing error

Left eye

Right eye
Qin – testing error 2

Left eye

Right eye
No (little) head movement
Best case scenario
Training error

Left eye

Right eye
Sample Results Without Stickers
Qin
Qin – training error

Left eye

Right eye
Qin – testing error

Left eye

Right eye
Gaze errors on real-world data

Average errors: 4.6 degrees with RGBD, and 5.6 degrees with RGB
Low-bound of gaze errors

With colored stickers

Average errors: 2.1 degrees with RGBD, and 3.2 degrees with RGB
Conclusions

• Using depth information directly from Kinect provides more accurate gaze estimation compared with the one from only RGB images.

• The lower bound for gaze error is around 2 degrees with RGBD and 4 degrees with RGB

• Future work
 • Better RGBD sensor -> lower gaze error
 • Leverage two eyes

Zhengyou Zhang, Qin Cai, Improving Cross-Ratio-Based Eye Tracking Techniques by Leveraging the Binocular Fixation Constraint, in ETRA 2014.
Thank You